Machine Learning

Nicolas P. Rougier July 2, 2018

Inria – Institute of Neurodegenerative Diseases – Bordeaux

Considering an input **x** (that can be an image, a text, a vector, a sequence, a set of features, a scalar, etc.)

Classification

To find the category C_x of some input x

Regression

To find the value $f(\mathbf{x})$ of some input \mathbf{x}

Clustering

To divide all inputs {x} into distinct groups

Optimization

To find a sequence $\{a_i\}$ such as to optimize $\sum f(a_i)$

We know that (x_1, y_1) is blue, (x_2, y_2) is blue, (x_3, y_3) is red., etc.

What is the color of (x, y)?

Regression

We know that $f(x_1) = y_1$, $f(x_2) = y_2$, $f(x_3) = y_3$, etc.

What is the value of f(x)?

We have (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , etc.

What group (x, y) belongs to?

You chose C and got no reward, you chose F and got no reward, you chose N and got no reward, etc.

What do you choose next?

Supervised learning

To learn a function that maps an input to an output based on example input-output pairs

Reinforcement learning

To find a policy that maps states to action such as to maximize long-term reward

Unsupervised learning

To infer a function that describes the structure of some (unlabeled) data

Machine learning \neq Human learning

To learn anything, at any time, using any method and a few samples.

Explicit & implicit learning, lifelong learning, imitation learning, one-shot learning, declarative and procedural memory, short and long term memory, working memory, forgetting, motivation, emotion, etc.

Data (60% of your time)

Analysis, acquisition, cleaning, preparation, augmentation, balance

Model (30% of your time)

Hyperparameters, pre-training, training, tweaking, testing

Deployment (10% of your time)

Optimization, dockerization, evaluation

Common pitfalls

Data

Small, unbalanced, biased, leakage, variance, etc

Model

Initialization, local minima, curse of dimensionality, etc

Deployment Scalability, fragility, ethics, etc

a woman riding a horse on a dirt road

an airplane is parked on the tarmac at an airport

a group of people standing on top of a beach

How big is "big"?

Deep convolutional network (Hinton, 2010)

- 5 convolutional layers
- 650,000 units
- 60,000,000 parameters

- 1,200,000 train images
- 100,000 test images
- 1,000 classes

Latest OpenAI DOTA player (June 2018): 180 years worth of games, 256 GPUs and 128,000 CPU cores.

Do I need deep learning?

If all you have is a hammer, everything looks like a nail.

Lot of challenges ahead

- $\cdot\,$ Learn with a few samples
- Lifelong learning
- Transfer learning
- Unbiased learning

Lot of opportunities as well...

- Robust learning
- Unsupervised learning
- Reinforcement learning